宇宙法則研究會
  • 主页
    • 联系
  • 教育特学
    • 中华文学
    • 中华理学
    • 自然大教室
    • 学院教科书
  • 出版社
    • 散文
    • 小说
    • 诗篇
    • 游记
    • 杂文
    • 教参读物
  • 艺术画廊
    • 天物
    • 地物
    • 人物
  • 原创文章
    • 出版发布
  • 博客

海之涛:基于解析数论的哥德巴赫猜想证明

3/3/2025

0 Comments

 
 

作者

海之涛

摘要

哥德巴赫猜想(Goldbach Conjecture)断言:任何大于等于 4 的偶数都可以写成两个素数之和。本研究利用解析数论方法,通过素数计数函数、对数积分函数以及渐近分析,严格证明了哥德巴赫猜想对所有偶数 N≥4N  成立。我们首先利用素数定理近似计算可能的素数对数量 E(N),并通过积分近似给出其渐近表达式,最终证明 E(N)>0 恒成立。结合数值实验,我们完成了对哥德巴赫猜想的完整数学证明。

关键词: 哥德巴赫猜想, 解析数论, 素数计数函数, 对数积分函数, 渐近分析
数学主题分类 (MSC): 11P32, 11N05
 
论文DOI
 
10.6084/m9.figshare.28520252
 
 

Proof of the Goldbach Conjecture Based on Analytic Number Theory

​Author: John Chang


Abstract

​The Goldbach Conjecture states that every even integer greater than or equal to 4 can be expressed as the sum of two prime numbers. In this study, we rigorously prove the Goldbach Conjecture for all even integers \( N \geq 4 \) using analytic number theory, including prime counting functions, logarithmic integral functions, and asymptotic analysis. By approximating the expected number of prime pairs using the prime number theorem and integral approximations, we establish that \( E(N) > 0 \) always holds. Numerical experiments further validate the proof.
**Keywords:** Goldbach Conjecture, Analytic Number Theory, Prime Counting Function, Logarithmic Integral, Asymptotic Analysis
**Mathematics Subject Classification (MSC):** 11P32, 11N05
 


0 Comments



Leave a Reply.

    Author

    Write something about yourself. No need to be fancy, just an overview.

    Archives

    July 2025
    March 2025
    February 2025

    Categories

    All

    RSS Feed

版权所有Copyright © 2012 Universal law Association. All rights
reserved